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Spatial recursive likelihood
identification of multivariable bilinear
unmanned aerial vehicle for air quality

testing

JUNJUN Liu', JUN ZHANG?

Abstract. In order to improve the accuracy of spatial recursive likelihood identification of
multivariable bilinear unmanned aerial vehicle, a spatial recursive likelihood identification method
of multivariable bilinear unmanned aerial vehicle based on differential evolution algorithm is pro-
posed. Firstly, give the aerodynamic parameter model of multivariable bilinear unmanned aerial
vehicle, ignore the elastic movement, take dynamic differential equations of rigid body with six
degrees of freedom as main governing equation, and ignore the inertia moment of dynamical sys-
tem. Secondly, in order to realize the identification of above model, a spatial recursive likelihood
identification method based on differential evolution algorithm is proposed to achieve the effective
identification on model. Finally, verify the performance superiority of proposed algorithm by the
identification comparison simulation of unmanned aerial vehicle model.

Key words. Differential evolution, Multivariable, Unmanned aerial vehicle, Spatial identi-
fication.

1. Introduction

The spatial recursive likelihood identification is firstly proposed for linear system.
In the case of strong-nonlinearity, traditional identification algorithm cannot reach
the purpose of identification optimization due to the large deviation between output
prediction and actual condition caused by the use f linear model, thus it must be
predicted and optimized on the base of nonlinear spatial identification model. The
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common nonlinear modeling method at present includes: mechanism model, Volterra
model, Hammerstein model and Wiene model. Establishing mechanism model is
required to fully understand the controlled object. However in the case of complex
process of production process and multiple connected factors, the establishment of
mechanism model usually is difficult. A large-scale device test is required for some
special models, such as Volterra, Harstein and Wiene, so the identification cost is
very high. Comparing with linear MPC, the example of nonlinear MPC applied in
Industry is few, and the most major problem is the high cost for nonlinear process
modeling and identification. Therefore, it is very important to find a nonlinear model
identification method with lower cost.

In the past 20 years, spatial model identification (SMI) has attracted great at-
tention. It is not only thanks to its excellent convergence and convent numerical
computation, but also because it is more suitable for estimate, predict and control
the algorithm. In previous references, most spatial identification method is pro-
vided with the character of open-loop identification. Considering the stable, safe
and control-oriented identification problems, researchers have been trying to apply
these spatial methods on closed-loop identification. The spatial method is expanded
to the estimation of frequency response function and continuous and discrete time
models are determined by auxiliary variable in Literature [9]. Two analytical meth-
ods for frequency statistic characteristics and spatial convergence are proposed in
Literature [10]. As to the linear closed-loop system in which the external input is
irrelevant to the noise observed, the cross-correlation function of output and external
input signals are equal to the cross-correlation function of output and external input
signals through dynamic system. Therefore, the relationship between the sequences
of two related functions can be entirely determined, and the unbiased parameter
estimation under any noise characteristic can be obtained. Take the sequence of
characteristic-correlated function as interface function. The important information
carried by it is hidden in the compression-correlated function form in data sequence.
It provides basis for parameter identification by extracting the interface function
information of the parameter.

Aiming at the model identification of unmanned aerial vehicle, a spatial recursive
likelihood identification algorithm of multivariable bilinear unmanned aerial vehicle
based on differential evolution algorithm is proposed, thus the unbiased parameters
estimation under the condition of closed-loop dynamics with linear invariant system
can be obtained. The solution is to achieve the estimation of correlation function
by using the translation invariance of dynamic system.

2. Aerodynamic parameter model of multivariable bilinear
unmanned aerial vehicle

As to the multivariable bilinear unmanned aerial vehicle, ignore the elastic move-
ment, take dynamic differential equations of rigid body with six degrees of freedom
as main governing equation, and ignore the inertia moment of dynamical system.
Aiming at the aerodynamic identification in the normal flight range of low-speed
mini UAV, the aerodynamic mathematical model of lift force, resistance, rolling mo-
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ment, pitching moment and yawing moment coeflicient in main governing equation
Cr, Cp, Cq, C, Cy, and C,, can be expressed as:
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Where, V, is the trimming airspeed at operating point in above formulas. Com-
paring with normal linear aerodynamic model, Cqo, Cio, Cro introduced in model
mainly consider the real existence of asymmetric external force effect in actual flight,
and apparent asymmetry also will be introduced by the measuring error. However
considering the essence of aerodynamic modeling, those errors shall be filtered out
firstly, and the errors have not been removed also will be reflected in asymmet-
ric terms. Cryv, Cgv and Cp,y are the aerodynamic derivatives caused by velocity
changes. Although the flight speed is at low Mach, the influence of propulsion system
on aerodynamic characteristics in actual flight cannot be ignored, thus such deriva-
tives are introduced, the influence of identification speed change on aerodynamic
coupling of propulsion system.

The observational equations used in aerodynamic identification are:
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All the values with a subscript of “m” are observed quantity in above formulas,
which are the actual measured value containing measured noise v and denoted as
Z; the corrected value which minuses the measured noise is equate to the numerical
integration result of dynamic differential equations with six degrees of freedom and
denoted as Y.

According to the observed quantity Z and the dynamic numerical integration
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result Y, the fitness function is designed as:
J=(Z-Y)'Q:-Y). (3)

@ is weight matrix in above formula. The parameters to be identified in aero-
dynamic model shall be optimized by optimization algorithm to minimize the value

of fitness function, and then the identification of aerodynamic parameter will be
finished.

3. Closed-loop spatial identification based on correlation
function estimation

The block matrix of identification framework is filled by the correlation function
estimation and null-space projection carried out later to obtain the range of extended
observable matrix. This is the basic step of spatial identification method. After that
basing on the same projection on time migration set of relevant data, a dynamic
estimation of known multivariable bilinear unmanned aerial vehicle system model
can be obtained.

3.1. Equation of block matrix data estimation

Construct the block Hankel matrix of correlation function estimation RZOTIT,_l
and Rﬁg’mil , including ¢ rows and j columns. The specific definition is as follows:
I ]:%yr (70) I?yv" (1) - R;ﬂ" (1j-1) ]
g | B () Byr(12) -+ Ry (7)) n
To|Ti—1 : : - : '
L Ryr (Ti-1) Ryr (i) -+ Ryr (Tj+i—2) i
i }:%ur (TO) }?ur (Tl) Rg?“ (Tj—l) i
~ Rur (Tl Rur (7—2 et Rur Tj
p | Bn) Bun) [ 5
L Rur (Ti—l) Rur (Ti) s Rur (Tj+i—2) J
where RZS\T,-,I € Rrvixnri, R%‘ﬂ_ﬂ € R"«iXnri Every element of R%.m,l and
Aﬁorm_l is the data of correlation function, ¢ and j are the subscripts defined by

user. According to Formula (4), above matrix meet following condition:

R

To|Ti—1

=R + To R (6)

To|Ti—1

where vector RYj is consist of the data of status-cross-correlation functions

70 = [Rar(T0) Rar (1) -+ - Rar(15-1)] - (7)
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Then the extended measurement matrix and Toeplitz matrix of lower triangular
block respectively are defined as follows:

r=[C, Gy, - CpAi-t]". (8)

D, 0 e 0

CpA, D, - 0
Toji—1 = : : N ©)
C,Ai2B, C,Ai*B, ... D,

By using one step of displacement process, the displacement equation correspond-
ing to Formula (10) can be defined as:

= DAL RET + Ty R

r
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R
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(10)

where matrix Tp|; can be obtained by supplementing the left side with a series of
null points. The form is as follows:

0 D, 0 - 0
0 A, D, - 0

Toji = : : . (11)
0 C,Ai2B, C,Ai3B, --- D,

Similarly, a row of null point can be added on the bottom of R’T‘;‘ ., to obtain

Ti

the expression form of R;‘glﬂ through expansion.

3.2. Parameter optimization of spatial identification based
on differential evolution

DE is an algorithm based on population evolution, provided with the characteris-
tics of remembering individual optimal solution or sharing information in population,
namely the solution of optimizing the problem by the cooperation and competition
between individuals in population [8].

a set of randomly initialized population shall be obtained firstly:

X9 = [m?;xg;- . ~;x?\,p] . (12)

N,, is the population size, and the individual of sth generation can be evolved as
follows after a series of specified operations:

J?f = [Iilaxi% e '7xf7D} . (13)

Where D is the dimensionality of the problem optimized.
Add the differential vector obtained by the subtraction of two different random
individuals of the parent on 3th individual selected randomly to generate a variant
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individual. Then carry out a crossover operation between above individuals of the
parent and such variant individual in accordance with a certain probability to gener-
ate a testing individual. Next make a selection operation between individuals of the
parent and such testing individual in accordance with the value of fitness function.
The individual with better fitness will be taken as daughter to ensure the evolution
is conducted towards optimum [9].

DE/rand/1/bin and DE/best/2/bin: Variation can avoid the local extremum of
evolution. There are many methods for it, and 2 basic variation methods are given
hereby, DE /rand/1/bin and DE /best/2/bin:

Tm = a5+ F (23 — 23) (14)

Ty =Ty + Fx [(5 — x5) + (255 —x54) |
In Formula (14), 2%, 235, 35, 2%, are the random individuals differing from each
other; m;best is the individual with best fitness in current population; F' € [0, 2] is
zoom factor,

Crossover strategy: assumed that the testing individual zp is generated by the
crossover operation between z] and x,, in population; in order to ensure the evo-
lution of individuals, x7 shall be contributed by one x,, at least through random
selection firstly. Others shall make use of crossover probability factor C'R, and the
crossover operation equation is:

j=1,2,---,D . 15
x5, rand > CR J (15)

ZTmj, rand < CR
TTi =
The selection operation adopts the search strategy of “Greedy”, in which the indi-
vidual with highest fitness value will be selected as daughter:

v Jor flar) < f@)
COT e fln) > )

xT

(16)

Repeat above operations until the daughter meeting the condition of fitness value
is generated, then ended [10-12].

3.3. Steps of algorithm

The specific computational process of closed-loop spatial identification of multi-
variable bilinear unmanned aerial vehicle proposed in the paper is as shown in Fig.
1. Firstly, obtain the closed-loop prediction on matrix parameter T', L and G on the
base of space projection method. Then obtain the computed values of parameter X,
A, C and R on the base of matrix manipulation and singular value decomposition
process. Finally, solve the system parameter matrix B and D by the algorithm of
differential evolution.

In Fig. 1, the solving of I' can be figured out according to Formula (28); L can be
figured out according to Formula (33-34); T can be figured out according to Formula
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Fig. 1. Process of closed-loop spatial identification

(16); X is the state vector matrix of equipment; A, B, C' and D are the state space
matrixes, see the part of system dynamics estimation in Section 2.3 for computation
process; R can be figured out according to Formula (35).

The multivariable bilinear unmanned aerial vehicle used is a low-speed unmanned
aerial vehicle with bi-tail-boom layout of a straight wing. The initial condition of
simulation is the state of fixed, straight and level flight. The trimming parameters
are as follows:

‘/0 = 35m/S, Qo = 5.880, ho = 200m 17
00 = —1.7°,Ty = 220.8TN (17)

As to the longitudinal aerodynamic parameter, only the longitudinal short-period
and long-period movement models of unmanned aerial vehicle shall be motivated.
For this reason, a combination of “3211” periodic signal with amplitude of 11.46° and
a step time interval of 0.3s and the pulse signal with duration of 3s is designed as
the simulation input signal of six degree-of-freedom model, and about a half of long-
period oscillation time is reserved to obtain more comprehensive characteristics of
long-period model of unmanned aerial vehicle. The speed, angle of attack, pitching
angle rate and the response curve of pitching angle are shown in Fig. 2. It can
be known from the figure that the signal and the combination of long pulse signals
successfully motivated obvious short-period and long-period movement models due
to the use of “3211".

4. Experimental analysis
4.1. Experiment settings

After acquiring the system frequency characteristics and determining the param-
eter model structure, the system identification has been transformed into a param-
eter estimation problem: that is, minimize the amplitude and phase error between
the expected SISO transfer function 7" and the corresponding composite frequency
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Fig. 2. Longitudinal response curve

response T through numerical optimization algorithm. Quadratic cost function:
20 <%

=25 w, [Wg (
Mo 4

where ||| is the amplitude at each frequency w; /Z is the phase of each frequency
w; Ny, is the number of sampling points of frequency; w; and wy,, are the starting
frequency and ending frequency value of fitting. The criterion of the cost function:

®When J < 100, it generally reflects the level of accuracy that the flight dynamic
model of flight can accept.

@When J < 50, it can be basically expected that it is almost impossible to detect
the difference between the fitting results and the flight data.

Therefore, the fitted LOES is within acceptable limits. Fig. 3 is the identification

result.

- ‘TD2 + W, (41 - AT)? . (18)

——— Measured value

""" Reconstructed value

Fig. 3. Identification results
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4.2. Comparision of identification results

Three optimization algorithms including GA, PSO and the algorithm in the Pa-
per are respectively used to identify the aerodynamic parameters. The simulation
experiment is divided into four groups in accordance with the maximum number of
iteration steps, namely, 500, 1000, and 2000, each of which is tested for identifica-
tion for 50 times. As a preliminary analysis, the test is not added to the observation
noise. In order to compare and evaluate the three algorithms as objective as possi-
ble, their parameters setting shall stay the same, and use the same fitness function,
population size and upper and lower bounds. See Table 1 for identification results.

Table 1. Comparison of identification results

Identified mean value

Parameter True value
GA PSO Proposed algorithm
Cpo 0.06 0.0569999 0.059909 0.06003
Cpa 0.43 0.4199999 0.430754 0.42974
Cro 0.385 0.3749999 0.385599 0.38474
CrLa 4.78 4.7699994 4.773452 4.78275
Crq 10.47 10.451354 10.35328 10.4928
Crs, 0.201 0.2109999 0.198585 0.20180
Cmo 0.194 0.1839999 0.194544 0.19394
Cma -2.12 -2.3200006  -2.321577 -2.11936
Cmg -47.6 -47.51452  -47.63800 -47.5840
Cms, -0.8 -0.8100001  -0.810625 -0.79974
Fitness value 121.57 289.38 84.26

Table 1 has compared the average values of the parameters and cost functions
on the part of three optimization algorithms successfully identified. From the true
value of identification parameters and identification results, all three algorithms
have excellent searching ability, PSO algorithm is simple and the mechanism of
their overall shared information greatly improves the efficiency of algorithm, but
in the later period of the algorithm, because the population position is relatively
concentrated, it does not jump out of the local optimal mechanism, making it difficult
jump out of local optimum. Compared with GA and PSO algorithm, the algorithm
in the Paper has better global searching ability, and the identification value obtained
is more accurate.

5. Conclusion

A spatial recursive likelihood identification method of multivariable bilinear un-
manned aerial vehicle based on differential evolution algorithm is proposed in the
paper. It takes dynamic differential equations of rigid body with six degrees of
freedom as main governing equation, gives the aerodynamic parameter model of
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multivariable bilinear unmanned aerial vehicle, and proposes a spatial recursive like-
lihood identification method based on differential evolution algorithm to achieve the
effective identification on model. The effectiveness of algorithm has been verified by
the experimental result. The main problem exist in the algorithm proposed in this
paper is that the computational complexity shall be further optimized.
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